
IOSR Journal of Engineering (IOSRJEN)

e-ISSN: 2250-3021, p-ISSN: 2278-8719, www.iosrjen.org

Volume 2, Issue 9 (September 2012), PP 36-44

www.iosrjen.org 36 | P a g e

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text

Classification

A.Kavitha
1,
Y.Sowjanya Kumari

2,
Dr.P.Harini

3

1
II M.Tech C.S.E St.Ann’s College of Engineering &Technology,Chirala

2
M.Tech (C.S.E)Department of Associate Professor St.Ann’s College of Engineering &Technology,Chirala.

3
Professor St.Ann’s College of Engineering &Technology,Chirala. (C.S.E).

Abstract––Feature clustering is a powerful method to reduce the dimensionality of feature vectors for text

classification. In this paper, we propose a fuzzy similarity-based self-constructing algorithm for feature

clustering. The words in the feature vector of a document set are grouped into clusters, based on similarity test.

Words that are similar to each other are grouped into the same cluster. Each cluster is characterized by a

membership function with statistical mean and deviation. When all the words have been fed in, a desired

number of clusters are formed automatically. We then have one extracted feature for each cluster. The extracted

feature, corresponding to a cluster, is a weighted combination of the words contained in the cluster. By this

algorithm, the derived membership functions match closely with and describe properly the real distribution of

the training data. Besides, the user need not specify the number of extracted features in advance, and trial-and-

error for determining the appropriate number of extracted features can then be avoided.

Index Terms—Fuzzy similarity, feature clustering, feature extraction, feature reduction, text classification

I. INTRODUCTION

 In text classification, the dimensionality of the feature vector is usually huge. For example, 20

Newsgroups [1] and Reuters21578 top-10 [2], which are two real-world data sets, both have more than 15,000

features. Such high dimensionality can be a severe obstacle for classification algorithms [3], [4]. To alleviate

this difficulty, feature reduction approaches are applied before document classification tasks are performed [5].

Two major approaches, feature selection [6], [7], [8], [9], [10] and feature extraction [11], [12], [13], have been

proposed for feature reduction. In general, feature extraction approaches are more effective than feature

selection techniques, but are more computationally expensive [11], [12], [14]. Therefore, developing scalable

and efficient feature extraction algorithms is highly demanded for dealing with high-dimensional document data

sets.

 Classical feature extraction methods aim to convert the representation of the original high-dimensional

data set into a lower-dimensional data set by a projecting process through algebraic transformations. For

example, Principal Component Analysis [15], Linear Discriminant Analysis [16], Maximum Margin Criterion

[12], and Orthogonal Centroid algorithm [17] perform the projection by linear transformations, while Locally

Linear Embedding [18], ISOMAP [19], and Laplacian Eigenmaps [20] do feature extraction by nonlinear

transformations. In practice, linear algorithms are in wider use due to their efficiency. Several scalable online

linear feature extraction algorithms [14], [21], [22], [23] have been proposed to improve the computational

complexity. However, the complexity of these approaches is still high. Feature clustering [24], [25], [26], [27],

[28], [29] is one of effective techniques for feature reduction in text classification. The idea of feature clustering

is to group the original features into clusters with a high degree of pairwise semantic relatedness. Each cluster is

treated as a single new feature, and, thus, feature dimensionality can be drastically reduced.

 The first feature extraction method based on feature clustering was proposed by Baker and McCallum

[24], which was derived from the “distributional clustering” idea of Pereira et al. [30]. Al-Mubaid and Umair

[31] used distributional clustering to generate an efficient representation of documents and applied a learning

logic approach for training text classifiers. The Agglomerative Information Bottleneck approach was proposed

by Tishby et al. [25], [29]. The divisive information-theoretic feature clustering algorithm was proposed by

Dhillon et al. [27], which is an information-theoretic feature clustering approach, and is more effective than

other feature clustering methods. In these feature clustering methods, each new feature is generated by

combining a subset of the original words. However, difficulties are associated with these methods. A word is

exactly assigned to a subset, i.e., hard-clustering, based on the similarity magnitudes between the word and the

existing subsets, even if the differences among these magnitudes are small. Also, the mean and the variance of a

cluster are not considered when similarity with respect to the cluster is computed. Furthermore, these methods

require the number of new features be specified in advance by the user.

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 37 | P a g e

We propose a fuzzy similarity-based self-constructing feature clustering algorithm, which is an incremental

feature clustering approach to reduce the number of features for the text classification task. The words in the

feature vector of a document set are represented as distributions, and processed one after another. Words that are

similar to each other are grouped into the same cluster. Each cluster is characterized by a membership function

with statistical mean and deviation. If a word is not similar to any existing cluster, a new cluster is created for

this word. Similarity between a word and a cluster is defined by considering both the mean and the variance of

the cluster. When all the words have been fed in, a desired number of clusters are formed automatically. We

then have one extracted feature for each cluster. The extracted feature corresponding to a cluster is a weighted

combination of the words contained in the cluster. Three ways of weighting, hard, soft, and mixed, are

introduced. By this algorithm, the derived membership functions match closely with and describe properly the

real distribution of the training data. Besides, the user need not specify the number of extracted features in

advance, and trial-and-error for determining the appropriate number of extracted features can then be avoided.

Experiments on real world data sets show that our method can run faster and obtain better extracted features

than other methods.

II. BACKGROUND AND RELATED WORK

 To process documents, the bag-of-words model [32], [33] is commonly used. Let

𝐃 = {𝐝1,𝐝2,… . . ,𝐝n} be a document set of n documents, where 𝒅1 ,𝒅2 ,… . . ,𝒅𝑛 are individual documents, and

each document belongs to one of the classes in the set {𝑐1 , 𝑐2,… . . , 𝑐𝑝}. If a document belongs to two or more

classes, then two or more copies of the document with different classes are included in 𝐃. Let the word set

W = {𝑤1 ,𝑤2 ,… . . ,𝑤𝑚 } be the feature vector of the document set. Each document 𝒅𝑖 , 1 ≤ 𝑖 ≤ 𝑛, is represented

as𝐝𝑖 =< 𝑑𝑖1 ,𝑑𝑖2 ,… . . ,𝑑𝑖𝑚 >, where each 𝑑𝑖𝑗 denotes the number of occurrences of wj in the ith document. The

feature reduction task is to find a new word set W' = {𝑤1
′ , 𝑤2

′ ,… . . ,𝑤𝑘
′ },k << m, such that W and W' work

equally well for all the desired properties with 𝐃. After feature reduction, each document 𝐝𝑖 is converted into a

new representation 𝐝𝑖
′ =< 𝑑𝑖1

′ , 𝑑𝑖2
′ ,… . . ,𝑑𝑖𝑘

′ > and the converted document set is D' = {𝐝1
′ , 𝐝2

′ ,… . . ,𝐝n
′ }. If k is

much smaller than m, computation cost with subsequent operations on D' can be drastically reduced.

2.1 Feature Reduction

 In general, there are two ways of doing feature reduction, feature selection, and feature extraction. By

feature selection approaches, a new feature set W' = {𝑤1
′ , 𝑤2

′ ,… . . ,𝑤𝑘
′ } is obtained, which is a subset of the

original feature set W. Then W' is used as inputs for classification tasks. Information Gain (IG) is frequently

employed in the feature selection approach [10]. It measures the reduced uncertainty by an information-theoretic

measure and gives each word a weight. The weight of a word 𝑤𝑗 is calculated as follows

𝐼𝐺 𝑤𝑗 = − 𝑃 𝑐𝑙 𝑙𝑜𝑔𝑃 𝑐𝑙

𝑝

𝑙=1

+ 𝑃 𝑤𝑗 𝑃 𝑐𝑙|𝑤𝑗 𝑙𝑜𝑔𝑃 𝑐𝑙 |𝑤𝑗

𝑝

𝑙=1

+ 𝑃 𝑤𝑗 𝑃 𝑐𝑙|𝑤𝑗 𝑙𝑜𝑔𝑃 𝑐𝑙|𝑤𝑗

𝑝

𝑙=1

 (1)

 where 𝑃 𝑐𝑙 denotes the prior probability for class 𝑐𝑙 , 𝑃 𝑤𝑗 denotes the prior probability for feature

𝑤𝑗 , 𝑃 𝑤𝑗 is identical to 1 − 𝑃 𝑤𝑗 , and 𝑃 𝑐𝑙|𝑤𝑗 and 𝑃 𝑐𝑙|𝑤𝑗 denote the probability for class 𝑐𝑙 with the

presence and absence, respectively, of 𝑤𝑗 . The words of top k weights in W are selected as the features in W'.

In feature extraction approaches, extracted features are obtained by a projecting process through algebraic

transformations.

 An incremental orthogonal centroid (IOC) algorithm was proposed in [14]. Let a corpus of documents

be represented as an 𝑚 × 𝑛 matrix 𝐗 ∈ 𝐑𝑚×𝑛 , where m is the number of features in the feature set and n is the

number of documents in the document set. IOC tries to find an optimal transformation matrix 𝐅∗ ∈ 𝐑𝑚×𝑘 , where

k is the desired number of extracted features, according to the following criterion:

𝐅∗ = arg max 𝑡𝑟𝑎𝑐𝑒 (𝐅𝑇𝐒𝑏𝐅), (2)

Where F ∈ 𝐑𝑚×𝑘 and 𝐅𝑇𝐅 = 𝐈, and

𝐒𝑏 = 𝑃 𝑐𝑞 (𝐌𝑞 −𝐌𝑎𝑙𝑙)(𝐌𝑞 −𝐌𝑎𝑙𝑙)𝑇

𝑝

𝑞=1

 (3)

 with 𝑃 𝑐𝑞 being the prior probability for a pattern belonging to class 𝑐𝑞 , 𝐌𝑞 being the mean vector of

class 𝑐𝑞 , and 𝐌𝑎𝑙𝑙 being the mean vector of all patterns.

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 38 | P a g e

2.2 Feature Clustering

 Feature clustering is an efficient approach for feature reduction [25], [29], which groups all features

into some clusters, where features in a cluster are similar to each other. The feature clustering methods proposed

in [24], [25], [27], [29] are “hard” clustering methods, where each word of the original features belongs to

exactly one word cluster. Therefore each word contributes to the synthesis of only one new feature. Each new

feature is obtained by summing up the words belonging to one cluster. Let 𝐃 be the matrix consisting of all the

original documents with m features and D' be the matrix consisting of the converted documents with new k

features. The new feature set W' = {𝑤1
′ , 𝑤2

′ ,… . . ,𝑤𝑘
′ } corresponds to a artition {𝐖1,𝐖2,… . . ,𝐖𝑘} of the

original feature set W, i.e., 𝐖𝑡∩ 𝐖𝑞 = ∅, where 1 ≤ 𝑞, 𝑡 ≤ 𝑘 and 𝑡 ≠ 𝑞. Note that a cluster corresponds to an

element in the partition. Then, the tth feature value of the converted document 𝐝𝑖
′ is calculated as follows:

𝑑𝑖𝑡
′ = 𝑑𝑖𝑗

𝑤𝑗∈𝐖𝑡

 (4)

 which is a linear sum of the feature values in 𝐖𝑡 . The divisive information-theoretic feature clustering

(DC) algorithm, proposed by Dhillon et al. [27] calculates the distributions of words over classes, 𝑃 𝐂 𝑤𝑗 , 1 ≤

𝑗 ≤ 𝑚, where, 𝐶 = 𝑐1 , 𝑐2,… . , 𝑐𝑝 and uses Kullback-Leibler divergence to measure the dissimilarity between

two distributions.

The distribution of a cluster 𝐖𝑡 is calculated as follows:

𝑃 𝐂 𝐖𝑡 =
𝑃 𝑤𝑗

 𝑃 𝑤𝑗 𝑤𝑗∈𝐖𝑡

𝑃 𝐂 𝑤𝑗

𝑤𝑗∈𝐖𝑡

 (5)

The goal of DC is to minimize the following objective function:

 𝑃 𝑤𝑗 𝐾𝐿(𝑃 𝐂 𝑤𝑗 ,𝑃 𝐂 𝐖𝑡)

𝑤𝑗∈𝐖𝑡

𝑘

𝑡=1

 (6)

which takes the sum over all the k clusters, where k is specified by the user in advance.

III. OUR METHOD

 There are some issues pertinent to most of the existing feature clustering methods. First, the parameter

k, indicating the desired number of extracted features, has to be specified in advance. This gives a burden to the

user, since trial-and-error has to be done until the appropriate number of extracted features is found. Second,

when calculating similarities, the variance of the underlying cluster is not considered. Intuitively, the

distribution of the data in a cluster is an important factor in the calculation of similarity. Third, all words in a

cluster have the same degree of contribution to the resulting extracted feature. Sometimes, it may be better if

more similar words are allowed to have bigger degrees of contribution. Our feature clustering algorithm is

proposed to deal with these issues.

 Suppose, we are given a document set 𝐃 of n documents 𝐝1,𝐝2,……𝐝n together with the feature vector

W of m words 𝑤1 ,𝑤2 ,……𝑤𝑚 and p classes 𝑐1, 𝑐2 ,……𝑐𝑝 , as specified in Section 2. We construct one word

pattern for each word in W. For word 𝑤𝑖 , its word pattern 𝐱𝑖 is defined, similarly as in [27], by

𝐱𝑖 =< 𝑥𝑖1 ,𝑥𝑖2 ,…… , 𝑥𝑖𝑝 >

 =< 𝑃 𝑐1 𝑤𝑖 ,𝑃 𝑐2 𝑤𝑖 ,…… ,𝑃 𝑐𝑝 𝑤𝑖 > (7)

Where

𝑃 𝑐1 𝑤𝑖 =
 𝑑𝑞𝑖 × 𝛿𝑞𝑗

𝑛
𝑞=1

 𝑑𝑞𝑖
𝑛
𝑞=1

 (8)

for 1 ≤ 𝑗 ≤ 𝑝. Note that 𝑑𝑞𝑖 indicates the number of occurrences of 𝑤𝑖 in document 𝑑𝑞 , as described in Section

2.

Also, 𝛿𝑞𝑗 is defined as

𝛿𝑞𝑗 =
1, if document 𝐝𝑞 belongs to class 𝑐𝑗
0, otherwise.

 (9)

 Therefore, we have m word patterns in total. It is these word patterns, our clustering algorithm will

work on. Our goal is to group the words in W into clusters, based on these word patterns. A cluster contains a

certain number of word patterns, and is characterized by the product of p one-dimensional Gaussian functions.

Gaussian functions are adopted because of their superiority over other functions in performance [34], [35]. Let

G be a cluster containing q word patterns 𝐱1, 𝐱2,… . 𝐱q . Let 𝐱𝑗 =< 𝑥𝑗1 , 𝑥𝑗2 ,…… . , 𝑥𝑗𝑝 >, 1 ≤ 𝑗 ≤ 𝑞. Then the

mean 𝐦 =< 𝑚1, 𝑚2,…… . ,𝑚𝑝 > and the deviation 𝛔 =< 𝜎1 , 𝜎2 ,…… . ,𝜎𝑝 > of 𝐺 are defined as

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 39 | P a g e

𝑚𝑖 =
 𝑥𝑗𝑖

𝑞
𝑗=1

 𝐺
 (10)

𝜎𝑖 =
 (𝑥𝑗𝑖 −𝑚𝑗𝑖)2𝑞

𝑗=1

 𝐺
 (11)

for 1 ≤ 𝑖 ≤ 𝑝, where 𝐺 denotes the size of G, i.e., the number of word patterns contained in G. The fuzzy

similarity of a word pattern 𝐱 =< 𝑥1 , 𝑥2 ,…… . , 𝑥𝑝 > to cluster G is defined by the following membership

function:

𝜇𝐺 𝐱 = exp −
𝑥𝑖 −𝑚𝑖

𝜎𝑖

2

 (12)

𝑝

𝑖=1

Notice that 0 ≤ 𝜇𝐺 𝐱 ≤ 1. A word pattern close to the mean of a cluster is regarded to be very similar to this

cluster, i.e.,

𝜇𝐺 𝐱 ≈ 1. On the contrary, a word pattern far distant from a cluster is hardly similar to this cluster, i.e.,

𝜇𝐺 𝐱 ≈ 0.

3.1 Self-Constructing Clustering

 Our clustering algorithm is an incremental, self-constructing learning approach. Word patterns are

considered one by one. The user does not need to have any idea about the number of clusters in advance. No

clusters exist at the beginning, and clusters can be created if necessary. For each word pattern, the similarity of

this word pattern to each existing cluster is calculated to decide whether it is combined into an existing cluster or

a new cluster is created. Once a new cluster is created, the corresponding membership function should be

initialized. On the contrary, when the word pattern is combined into an existing cluster, the membership

function of that cluster should be updated accordingly.

 Let k be the number of currently existing clusters. The clusters are 𝐺1,𝐺2 ,… .𝐺𝑘 , respectively. Each

cluster 𝐺𝑗 has mean 𝐦𝑗 =< 𝑚𝑗1, 𝑚𝑗2,…… . ,𝑚𝑗𝑝 > and deviation 𝛔𝑗 =< 𝜎𝑗1 , 𝜎𝑗2,…… . ,𝜎𝑗𝑝 >. Let 𝑆𝑗 be the

size of cluster 𝐺𝑗 . Initially, we have k = 0. So, no clusters exist at the beginning. For each word pattern 𝐱𝑖 =<

𝑥𝑖1 , 𝑥𝑖2 ,…… . , 𝑥𝑖𝑝 >, 1 ≤ 𝑖 ≤ 𝑚, we calculate, according to (13), the similarity of 𝐱𝑖 to each existing clusters,

i.e.

𝜇𝐺𝑗 𝐱𝑖 = exp −
𝑥𝑖𝑞 −𝑚𝑗𝑞

𝜎𝑗𝑞

2

𝑝

𝑖=1

 (13)

for 1 ≤ 𝑗 ≤ 𝑘. We say that 𝐱𝑖 passes the similarity test on cluster 𝐺𝑗 if

𝜇𝐺𝑗 𝐱𝑖 ≥ 𝜌 (14)

 where 𝜌, 0 ≤ 𝜌 ≤ 1, is a predefined threshold. If the user intends to have larger clusters, then he/she

can give a smaller threshold. Otherwise, a bigger threshold can be given. As the threshold increases, the number

of clusters also increases. Note that, as usual, the power in (13) is 2 [34], [35]. Its value has an effect on the

number of clusters obtained. A larger value will make the boundaries of the Gaussian function sharper, and

more clusters will be obtained for a given threshold. On the contrary, a smaller value will make the boundaries

of the Gaussian function smoother, and fewer clusters will be obtained instead.

 Two cases may occur. First, there are no existing fuzzy clusters on which xi has passed the similarity

test. For this case, we assume that xi is not similar enough to any existing cluster and a new cluster 𝐺 h = k + 1,

is created with

𝐦 = 𝐱𝑖 , 𝛔 = 𝛔0 (15)

 where 𝛔0 =< σ0,…… . . σ0 > is a user-defined constant vector. Note that the new cluster 𝐺 contains

only one member, the word pattern 𝐱𝑖 , at this point. Estimating the deviation of a cluster by (11) is impossible,

or inaccurate, if the cluster contains few members. In particular, the deviation of a new cluster is 0, since it

contains only one member. We cannot use zero deviation in the calculation of fuzzy similarities. Therefore, we

initialize the deviation of a newly created cluster by 𝛔0, as indicated in (15). Of course, the number of clusters is

increased by 1 and the size of cluster 𝐺 , 𝑆 ,, should be initialized, i.e.,

𝑘 = 𝑘 + 1, S = 1 (16)

 Second, if there are existing clusters on which 𝐱𝑖 has passed the similarity test, let cluster 𝐺 be the

cluster with the largest membership degree, i.e.,

𝑡 = 𝑎𝑟𝑔 max
1≤𝑗≤𝑘

𝜇𝐺𝑗 𝐱𝑖 (17)

In this case, we regard 𝐱𝑖 to be most similar to cluster 𝐺𝑡 , and 𝐦𝑡 and 𝛔𝑡 of cluster 𝐺𝑡 should be modified to

include 𝐱𝑖 as its member. The modification to cluster 𝐺𝑡 is described as follows:

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 40 | P a g e

𝑚𝑡𝑗 =
𝑆𝑡 × 𝑚𝑡𝑗 + 𝑥𝑖𝑗

𝑆𝑡 + 1
 (18)

𝜎𝑡𝑗 = 𝐴 − 𝐵 + 𝜎0 (19)

𝐴 =
 𝑆𝑡 − 1 𝜎𝑡𝑗 − 𝜎0

2
+ 𝑆𝑡 × 𝑚𝑡𝑗

2 + 𝑥𝑖𝑗
2

𝑆𝑡
 (20)

𝐵 =
𝑆𝑡 + 1

𝑆𝑡

𝑆𝑡 × 𝑚𝑡𝑗 + 𝑥𝑖𝑗

𝑆𝑡 + 1

2

 (21)

for 1 ≤ 𝑗 ≤ p, and

𝑆𝑡 = 𝑆𝑡 + 1 (22)

Equations (18) and (19) can be derived easily from (10) and (11). Note that k is not changed in this case.

The whole clustering algorithm can be summarized below.

Initialization:

of original word patterns: m

of classes: p

Threshold:

Initial deviation: 0

Initial # of clusters: k = 0

Input:

 𝐱𝑖 =< 𝑥𝑖1 , 𝑥𝑖2 ,…… . , 𝑥𝑖𝑝 >, 1 ≤ 𝑖 ≤ 𝑚

Output:

 Clusters 𝐺1 ,𝐺2,… .𝐺𝑘

procedure Self-Constructing-Clustering-Algorithm

 for each word pattern 𝐱𝑖 , 1 ≤ 𝑖 ≤ 𝑚

 𝑡𝑒𝑚𝑝_𝐖 = 𝐺𝑗 |𝜇𝐺𝑗 𝐱𝑖 ≥ 𝜌, 1 ≤ 𝑗 ≤ 𝑘 ;

 if 𝑡𝑒𝑚𝑝_𝐖 == ∅
 A new cluster𝐺 , = 𝑘 + 1, is created by (15)-(16);

 else let 𝐺𝑡 ∈ 𝑡𝑒𝑚𝑝_𝐖 be the cluster to which 𝐱𝑖 is

 closest by (17);

 Incorporate 𝐱𝑖 into 𝐺𝑡 by (18)-(22);

 endif;

 endfor;

 return with the created k clusters;

endprocedure

 Note that the word patterns in a cluster have a high degree of similarity to each other. Besides, when

new training patterns are considered, the existing clusters can be adjusted or new clusters can be created,

without the necessity of generating the whole set of clusters from the scratch.

 Note that the order in which the word patterns are fed in influences the clusters obtained. We apply a

heuristic to determine the order. We sort all the patterns, in decreasing order, by their largest components. Then

the word patterns are fed in this order. In this way, more significant patterns will be fed in first and likely

become the core of the underlying cluster. This heuristic seems to work well.

 We discuss briefly here the computational cost of our method and compare it with DC [27], IOC [14],

and IG [10]. For an input pattern, we have to calculate the similarity between the input pattern and every

existing cluster. Each pattern consists of p components where p is the number of classes in the document set.

Therefore, in worst case, the time complexity of our method is O(mkp), where m is the number of original

features and k is the number of clusters finally obtained. For DC, the complexity is O(mkpt), where t is the

number of iterations to be done. The complexity of IG is O(mp+mlogm), and the complexity of IOC is O(mkpn),

where n is the number of documents involved. Apparently, IG is the quickest one. Our method is better than DC

and IOC.

3.2 Feature Extraction

 Formally, feature extraction can be expressed in the following form:

𝐃′ = 𝐃𝐓 (23)

𝐃 = 𝐝𝟏 𝐝𝟐 … . 𝐝𝐧
𝑇 , (24)

𝐃′ = 𝐝1
′ 𝐝2

′ … . 𝐝𝑛
′ 𝑇 , (25)

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 41 | P a g e

𝐓 =

𝑡11 … . 𝑡1𝑘

𝑡21 … . 𝑡2𝑘

𝑡𝑚1 … . 𝑡𝑚𝑘

 , (26)

with

𝐝𝑖 = 𝑑𝑖1 𝑑𝑖2 … . .𝑑𝑖𝑚 ,

𝐝𝑖
′ = 𝑑𝑖1

′ 𝑑𝑖2
′ …… 𝑑𝑖𝑘

′ ,

 for 1 ≤ 𝑖 ≤ 𝑛. Clearly, 𝐓 is a weighting matrix. The goal of feature reduction is achieved by finding an

appropriate 𝐓 such that k is smaller than m. In the divisive information theoretic feature clustering algorithm

[27] described in Section 2.2, the elements of T in (25) are binary and can be defined as follows:

𝑡𝑖𝑗 =
1, 𝑖𝑓 𝑤𝑖 ∈ 𝐖𝑗 ,

0, otherwise,
 (27)

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑘. That is, if a word wi belongs to cluster 𝐖𝑗 , 𝑡𝑖𝑗 is 1; otherwise 𝑡𝑖𝑗 is 0.

 By applying our clustering algorithm, word patterns have been grouped into clusters, and words in the

feature vector 𝐖 are also clustered accordingly. For one cluster, we have one extracted feature. Since we have k

clusters, we have k extracted features. The elements of 𝐓 are derived based on the obtained clusters, and feature

extraction will be done. We propose three weighting approaches: hard, soft, and mixed. In the hard-weighting

approach, each word is only allowed to belong to a cluster, and so it only contributes to a new extracted feature.

In this case, the elements of 𝐓 in (23) are defined as follows:

𝑡𝑖𝑗 =
1, 𝑖𝑓 𝑗 = 𝑎𝑟𝑔 max

1≤𝑗≤𝑘
𝜇𝐺𝑗 𝐱𝑖 ,

0, otherwise,
 (28)

 Note that if j is not unique in (28), one of them is chosen randomly. In the soft-weighting approach,

each word is allowed to contribute to all new extracted features, with the degrees depending on the values of the

membership functions. The elements of 𝐓 in (23) are defined as follows:

𝑡𝑖𝑗 = 𝜇𝐺𝑗 𝐱𝑖 (29)

 The mixed-weighting approach is a combination of the hard-weighting approach and the soft-weighting

approach. For this case, the elements of 𝐓 in (23) are defined as follows:

𝑡𝑖𝑗 = γ × 𝑡𝑖𝑗
𝐻 + (1 − γ) × 𝑡𝑖𝑗

𝑆 (30)

 where 𝑡𝑖𝑗
𝐻 is obtained by (28) and 𝑡𝑖𝑗

𝑆 is obtained by (29), and γ is a user-defined constant lying between

0 and 1. Note that is not related to the clustering. It concerns the merge of component features in a cluster into a

resulting feature. The merge can be “hard” or “soft” by setting γ to 1 or 0. By selecting the value of γ, we

provide flexibility to the user. When the similarity threshold is small, the number of clusters is small, and each

cluster covers more training patterns. In this case, a smaller γ will favor soft-weighting and get a higher

accuracy. On the contrary, when the similarity threshold is large, the number of clusters is large, and each

cluster covers fewer training patterns. In this case, a larger γ will favor hard-weighting and get a higher

accuracy.

3.3 Text Classification

 Given a set 𝐃 of training documents, text classification can be done as follows: We specify the

similarity threshold 𝜌 for (15), and apply our clustering algorithm. Assume that k clusters are obtained for the

words in the feature vector W. Then we find the weighting matrix 𝐓 and convert 𝐃 to 𝐃′ by (23). Using 𝐃′ as

training data, a classifier based on support vector machines (SVM) is built. Note that any classifying technique

other than SVM can be applied. Joachims [36] showed that SVM is better than other methods for text

categorization. SVM is a kernel method, which finds the maximum margin hyper plane in feature space

separating the images of the training patterns into two groups [37], [38], [39]. To make the method more flexible

and robust, some patterns need not be correctly classified by the hyperplane, but the misclassified patterns

should be penalized. Therefore, slack variables 𝜉𝑖 are introduced to account for misclassifications. The objective

function and constraints of the classification problem can be formulated as:

min
𝑤 ,𝑏

1

2
𝐰𝑇𝐰 + 𝐶 𝜉𝑖

𝑙

𝑖=1

 (31)

𝑠. 𝑡. 𝑦𝑖 𝐰
𝑇𝜙 𝐱𝑖 + 𝐛 ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, 2,…… . , 𝑙,

 where l is the number of training patterns, 𝐶 is a parameter, which gives a tradeoff between maximum

margin and classification error, and 𝑦𝑖 , being +1 or -1, is the target label of pattern 𝐱𝑖 . Note that 𝜙:𝑋 → 𝐹 is a

mapping from the input space to the feature space 𝐹, where patterns are more easily separated, and 𝐰𝑇𝜙 𝐱𝑖 +
𝐛 = 0 is the hyper plane to be derived with w, and b being weight vector and offset, respectively.

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 42 | P a g e

An SVM described above can only separate apart two classes, 𝑦𝑖 = +1 and 𝑦𝑖 = −1. We follow the idea in [36]

to construct an SVM-based classifier. For p classes, we create p SVMs, one SVM for each class. For the SVM

of class 𝑐𝑣 , 1 ≤ 𝑣 ≤ 𝑝, the training patterns of class 𝑐𝑣 are treated as having 𝑦𝑖 = +1, and the training patterns

of the other classes are treated as having 𝑦𝑖 = −1. The classifier is then the aggregation of these SVMs. Now we

are ready for classifying unknown documents. Suppose, 𝐝 is an unknown document. We first convert 𝐝 to 𝐝′ by

𝐝′ = 𝐝𝐓 (32)
 Then we feed 𝐝′ to the classifier. We get p values, one from each SVM. Then 𝐝 belongs to those

classes with 1, appearing at the outputs of their corresponding SVMs.

IV. AN EXAMPLE FOR PROPOSED METHOD

TABLE 1 A Simple Document Set D

 Offic

e

(𝑤1)

Buildin

g

(𝑤2)

Line

(𝑤3)

Floo

r

(𝑤4)

Bedroo

m

(𝑤5)

Kitchen

(𝑤6)

Apartmen

t

(𝑤7)

Internet

(𝑤8)

W

C

(𝑤9)

Fridg

e

(𝑤10)

clas

s

𝑑 1 0 1 0 0 1 1 0 0 0 1 𝑐 1

𝑑 2 0 0 0 0 0 2 1 1 0 0 𝑐 1

𝑑 3 0 0 0 0 0 0 1 0 0 0 𝑐 1

𝑑 4 0 0 1 0 2 1 2 1 0 1 𝑐 1

𝑑 5 0 0 0 1 0 1 0 0 1 0 𝑐 2

𝑑 6 2 1 1 0 0 1 0 0 1 0 𝑐 2

𝑑 7 3 2 1 3 0 1 0 1 1 0 𝑐 2

𝑑 8 1 0 1 1 0 1 0 0 0 0 𝑐 2

𝑑 9 1 1 1 1 0 0 0 0 0 0 𝑐 2

TABLE 2 Word Patterns of 𝐖

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.00 0.20 0.2

0

0.0

0

1.0

0

0.5

0

1.00 0.67 0.00 1.00

1.00 0.80 0.8

0

1.0

0

0.0

0

0.5

0

0.00 0.33 1.00 0.00

TABLE 3 Three Clusters Obtained

Cluster Size S mean m Deviation 𝝈

𝐺 1 3 < 1, 0 > < 0.5, 0.5 >

𝐺 2 5 < 0.08, 0.92 > < 0.6095, 0.6095 >

𝐺 3 2 < 0.5833, 0.4167 > < 0.6179, 0.6179 >

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 43 | P a g e

TABLE 4 Fuzzy Similarities of Word Patterns to Three Clusters

similarit

y

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

𝜇 𝐺 1
(𝐱) 0.0003 0.0060 0.0060 0.0003 1.0000 0.1353 1.0000 0.411 0.0003 1.0000

𝜇 𝐺 2
(𝐱) 0.9661 0.9254 0.9254 0.9661 0.0105 0.3869 0.0105 0.156

8

0.9661 0.0105

𝜇 𝐺 3
(𝐱) 0.1682 0.4631 0.4631 0.1682 0.4027 0.9643 0.4027 0.964

3

0.1682 0.4027

TABLE 5 Weighting Matrices: Hard 𝐓𝐻 , Soft 𝐓 𝑆 , and Mixed 𝐓𝑀

𝐓𝐻 =

0 1 0
0 1 0
0 1 0
0 1 0
1 0 0
0 0 1
1 0 0
0 0 1
0 1 0
1 0 0

, 𝐓 𝑆 =

0.0003 0.9661 0.1682

0.0060 0.9254 0.4631

0.0060 0.9254 0.4631

0.0003 0.9661 0.1682

1.0000 0.0105 0.4027

0.1353 0.3869 0.9643

1.0000 0.0105 0.4027

0.4111 0.1568 0.9643

0.0003 0.9661 0.1682

1.0000 0.0105 0.4027

, 𝐓𝑀 =

0.0001 0.9932 0.0336

0.0012 0.9851 0.0926

0.0012 0.9851 0.0926

0.0001 0.9932 0.0336

1.0000 0.0021 0.0805

0.0271 0.0774 0.9929

1.0000 0.0021 0.0805

0.0822 0.0314 0.9929

0.0001 0.9932 0.0336

1.0000 0.0021 0.0805

TABLE 6 Transformed Data Sets: Hard 𝐃𝐻
1 , Soft 𝐃𝑆

1 and Mixed 𝐃𝑀
1

 (𝑤1
′) (𝑤2

′) (𝑤3
′) (𝑤1

′) (𝑤2
′) (𝑤3

′) (𝑤1
′) (𝑤2

′) (𝑤3
′)

𝑑1
′ 2 1 1 𝑑1

′ 2.1413 1.3333 2.2327 𝑑1
′ 2.0283 1.0667 1.2465

𝑑2
′ 1 0 3 𝑑2

′ 1.6818 0.9411 3.2955 𝑑2
′ 1.1364 0.1882 3.0591

𝑑3
′ 1 0 0 𝑑3

′ 1.0000 0.0105 0.4027 𝑑3
′ 1.0000 0.0021 0.0805

𝑑4
′ 5 1 2 𝑑4

′ 5.5524 1.5217 4.4051 𝑑4
′ 5.1105 1.1043 2.4810

𝑑5
′ 0 2 1 𝑑5

′ 0.13360 2.3192 1.3006 𝑑5
′ 0.0272 2.0638 1.0601

𝑑6
′ 0 5 1 𝑑6

′ 0.1483 5.1362 2.3949 𝑑6
′ 0.0297 5.0272 1.2790

𝑑7
′ 0 10 2 𝑑7

′ 0.5667 10.0829 4.4950 𝑑7
′ 0.1133 10.0166 2.4990

𝑑8
′ 0 3 1 𝑑 8

′ 0.1420 3.2446 1.7637 𝑑 8
′ 0.0284 3.0489 1.1527

𝑑 9
′ 0 4 0 𝑑 9

′ 0.0126 3.7831 1.2625 𝑑 9
′ 0.0025 3.9566 0.2525

𝐃𝐻
1 𝐃𝑆

1 𝐃𝑀
1

V. CONCLUSION

 We have presented a fuzzy self-constructing feature clustering (FFC) algorithm, which is an

incremental clustering approach to reduce the dimensionality of the features in text classification. Features that

are similar to each other are grouped into the same cluster. Each cluster is characterized by a membership

function with statistical mean and deviation. If a word is not similar to any existing cluster, a new cluster is

created for this word. Similarity between a word and a cluster is defined by considering both the mean and the

variance of the cluster. When all the words have been fed in, a desired number of clusters are formed

automatically. We then have one extracted feature for each cluster. The extracted feature corresponding to a

cluster is a weighted combination of the words contained in the cluster. By this algorithm, the derived

membership functions match closely with and describe properly the real distribution of the training data.

Besides, the user need not specify the number of extracted features in advance, and trial-and-error for

determining the appropriate number of extracted features can then be avoided.

REFERENCES
[1] Http://people.csail.mit.edu/jrennie/20Newsgroups/, 2010.

[2] Http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html. 2010.

[3] H. Kim, P. Howland, and H. Park, “Dimension Reduction in Text Classification with Support Vector Machines,” J.

Machine Learning Research, vol. 6, pp. 37-53, 2005.

[4] F. Sebastiani, “Machine Learning in Automated Text Categorization,” ACM Computing Surveys, vol. 34, no. 1, pp.

1-47, 2002.

A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification

www.iosrjen.org 44 | P a g e

[5] B.Y. Ricardo and R.N. Berthier, Modern Information Retrieval. Addison Wesley Longman, 1999.

[6] A.L. Blum and P. Langley, “Selection of Relevant Features and Examples in Machine Learning,” Aritficial

Intelligence, vol. 97, nos. 1/2, pp. 245-271, 1997.

[7] E.F. Combarro, E. Montan˜ e´s, I. Dı´az, J. Ranilla, and R. Mones, “Introducing a Family of Linear Measures for

Feature Selection in Text Categorization,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 9, pp. 1223-1232,

Sept. 2005.

[8] K. Daphne and M. Sahami, “Toward Optimal Feature Selection,” Proc. 13th Int’l Conf. Machine Learning, pp. 284-

292, 1996.

[9] R. Kohavi and G. John, “Wrappers for Feature Subset Selection,” Aritficial Intelligence, vol. 97, no. 1-2, pp. 273-

324, 1997.

[10] Y. Yang and J.O. Pedersen, “A Comparative Study on Feature Selection in Text Categorization,” Proc. 14th Int’l

Conf. Machine Learning, pp. 412-420, 1997.

[11] D.D. Lewis, “Feature Selection and Feature Extraction for Text Categorization,” Proc. Workshop Speech and Natural

Language, pp. 212-217, 1992.

[12] H. Li, T. Jiang, and K. Zang, “Efficient and Robust Feature Extraction by Maximum Margin Criterion,” T. Sebastian,

S. Lawrence, and S. Bernhard eds. Advances in Neural Information Processing System, pp. 97-104, Springer, 2004.

[13] E. Oja, Subspace Methods of Pattern Recognition. Research Studies Press, 1983.

[14] J. Yan, B. Zhang, N. Liu, S. Yan, Q. Cheng, W. Fan, Q. Yang, W. Xi, and Z. Chen, “Effective and Efficient

Dimensionality Reduction for Large-Scale and Streaming Data Preprocessing,” IEEE Trans. Knowledge and Data

Eng., vol. 18, no. 3, pp. 320-333, Mar. 2006.

[15] I.T. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

[16] A.M. Martinez and A.C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23,

no. 2 pp. 228-233, Feb. 2001.

[17] H. Park, M. Jeon, and J. Rosen, “Lower Dimensional Representation of Text Data Based on Centroids and Least

Squares,” BIT Numerical Math, vol. 43, pp. 427-448, 2003.

[18] S.T. Roweis and L.K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding,” Science, vol. 290,

pp. 2323-2326, 2000.

[19] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality

Reduction,” Science, vol. 290, pp. 2319-2323, 2000.

[20] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering,” Advances

in Neural Information Processing Systems, vol. 14, pp. 585-591, The MIT Press 2002.

[21] K. Hiraoka, K. Hidai, M. Hamahira, H. Mizoguchi, T. Mishima, and S. Yoshizawa, “Successive Learning of Linear

Discriminant Analysis: Sanger-Type Algorithm,” Proc. IEEE CS Int’l Conf. Pattern Recognition, pp. 2664-2667,

2000.

[22] J. Weng, Y. Zhang, and W.S. Hwang, “Candid Covariance-Free Incremental Principal Component Analysis,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1034-1040, Aug. 2003.

[23] J. Yan, B.Y. Zhang, S.C. Yan, Z. Chen, W.G. Fan, Q. Yang, W.Y. Ma, and Q.S. Cheng, “IMMC: Incremental

Maximum Margin Criterion,” Proc. 10th ACM SIGKDD, pp. 725-730, 2004.

[24] L.D. Baker and A. McCallum, “Distributional Clustering of Words for Text Classification,” Proc. ACM SIGIR, pp.

96-103, 1998.

[25] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter, “Distributional Word Clusters versus Words for Text

Categorization,” J. Machine Learning Research, vol. 3, pp. 1183-1208, 2003.

[26] M.C. Dalmau and O.W.M. Flo´ rez, “Experimental Results of the Signal Processing Approach to Distributional

Clustering of Terms on Reuters-21578 Collection,” Proc. 29th European Conf. IR Research, pp. 678-681, 2007.

[27] I.S. Dhillon, S. Mallela, and R. Kumar, “A Divisive Infomation- Theoretic Feature Clustering Algorithm for Text

Classification,” J. Machine Learning Research, vol. 3, pp. 1265-1287, 2003.

[28] D. Ienco and R. Meo, “Exploration and Reduction of the Feature Space by Hierarchical Clustering,” Proc. SIAM

Conf. Data Mining, pp. 577-587, 2008.

[29] N. Slonim and N. Tishby, “The Power of Word Clusters for Text Classification,” Proc. 23rd European Colloquium

on Information Retrieval Research (ECIR), 2001.

[30] F. Pereira, N. Tishby, and L. Lee, “Distributional Clustering of English Words,” Proc. 31st Ann. Meeting of ACL,

pp. 183-190, 1993.

[31] H. Al-Mubaid and S.A. Umair, “A New Text Categorization Technique Using Distributional Clustering and Learning

Logic,” IEEE Trans.

